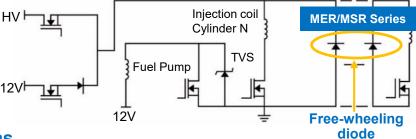


200 V Automotive-grade Hyper Fast Recovery Rectifiers

MER & MSR Series - High Efficiency & High Junction Temperature



MER & MSR series are designed with the most advanced planar constructions to deliver faster reverse recovery time; which reduce switching loss while improving operating efficiency. The soft recovery characteristic further reduces EMI. With high junction temperature of 175°C, both series are aging-resistant. They are optimal for applications with high-temperature environments and require high-reliability.

> Features

- AEC-Q101 qualified*
- Planar construction
- Fast reverse recovery time (T_{RR})
- Low reverse recovery charge (Q_{RR})
- · Low switching loss
- Low leakage current
- 175°C operating junction temperature

▶ Electronic Control Unit Application Circuit Example

Applications

- Telecom Power
- Server Power
- PC Power

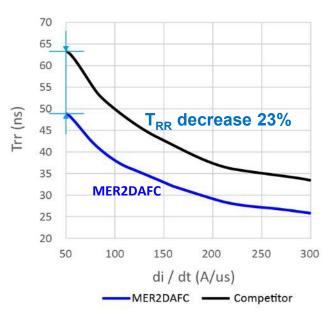
Automotive

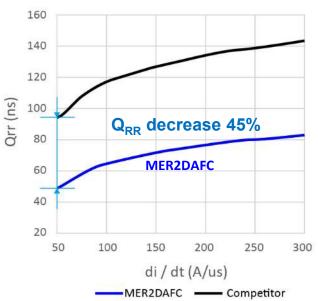
- Engine Control Unit
- Oil & Water Pump
- Lighting System
- BMS

Industrial

- PV Control Unit
- LED Lighting
- UPS

Consumer




- Home Appliance
- Lighting
- Router

➤ Switching Performance

Test Condition : I_F=2 A , V_R=200 V , Tj=125°C

> Products

V_{RRM}	I _F	V _F	I _R	T _{RR}				Prosent	PANALIT.	Parameter.
[V]	[A]	[V]	[μΑ]	[nS]	SOD-123FL	SOD-123HE	SMAF-C	SMBF	SMA	SMB
200	1	0.95@1 A	1	20	MSR1DAL MSR1DAL-AU	MSR1DAH MSR1DAH-AU	MSR1DAFC MSR1DAFC-AU	-	MSR1DMA MSR1DMA-AU	MSR1DMB MSR1DMB-AU
	2	0.95@2 A	1	20	MSR2DAL MSR2DAL-AU	MSR2DAH MSR2DAH-AU	MSR2DAFC MSR2DAFC-AU	-	MSR2DMA MSR2DMA-AU	MSR2DMB MSR2DMB-AU
	1	<u>0.95@1</u> A	1	35	-	MER1DAH MER1DAH-AU	MER1DAFC MER1DAFC-AU	-	MER1DMA MER1DMA-AU	MER1DMB MER1DMB-AU
	2	<u>0.95@2</u> A	1	35	MER2DAL MER2DAL-AU	MER2DAH MER2DAH-AU	MER2DAFC MER2DAFC-AU	MER2DBF MER2DBF-AU	MER2DMA MER2DMA-AU	MER2DMB MER2DMB-AU
	3	0.95@3 A	1	35	-	MER3DAH MER3DAH-AU	MER3DAFC MER3DAFC-AU	MER3DBF MER3DBF-AU	MER3DMA MER3DMA-AU	MER3DMB MER3DMB-AU

V_{RRM}	I _F	V _F	I _R	T _{RR}		*		15
[V]	[A]	[V]	[μΑ]	[nS]	TO-220AC	ITO-220AC	TO-220AB	ITO-220AB
	5/10	0.95@5 A	1	35	MER502T	MER502FT	MER1002CT	MER1002FCT
200	8/16	0.95@8 A	1	35	MER802T	MER802FT	MER1602CT	MER1602FCT
	10/20	0.95@ 0 A	1	35	MER1002T	MER1002FT	MER2002CT	MER2002FCT

*Product numbers ending in -AU are AEC-Q101 qualified